Contents

- Mathematics and general framework
 - Our problem
 - Covers
 - Reformulation of the problem
 - Column generation
 - Pricing subproblem
 - Matheuristics

α -CMLP

• set of targets and sensors

- set of targets and sensors
- base station

- set of targets and sensors
- base station
- activated sensors

- set of targets and sensors
- base station
- activated sensors
- communication links

- set of targets and sensors
- base station
- activated sensors
- communication links
- ullet α -coverage

α -CMLP-MR

- set of targets and sensors
- base station
- activated sensors
- communication links
- ullet α -coverage
- some sensors can be used for communication only!

α -CMLP-MR

- set of targets and sensors
- base station
- activated sensors
- communication links
- α -coverage
- some sensors can be used for communication only!

We are now looking for subsets of active sensors and their role

Covers

Definition (Cover)

A cover is a subset of sensors used at the same time for covering a subset of targets

Examples:

- cover $\{s_1\}$ covers t_1 and t_2
- cover $\{s_1, s_2\}$ covers all the targets
- cover $\{s_1, s_3\}$ also covers all the targets

Scheduling the covers (disjoint covers)

In that small example, we have 3 covers $S_1=\{s_1,s_2\}$, $S_2=\{s_1,s_3\}$ and $S_3=\{s_2,s_3\}$ that cover all the targets

Continuous use of covers (disjoint covers)

Battery depleted for s_1 and s_2 , other covers cannot be used.

If we want to cover **all the targets** with disjoint covers, maximum network lifetime is equal to 1

Scheduling the covers (non-disjoint covers)

Sequentially use $\{s_1,s_2\}$, $\{s_1,s_3\}$ and $\{s_2,s_3\}$ for 0.5 units of time each

Scheduling the covers (non-disjoint covers)

Sequentially use $\{s_1, s_2\}$, $\{s_1, s_3\}$ and $\{s_2, s_3\}$ for 0.5 units of time each

Scheduling the covers (non-disjoint covers)

Sequentially use $\{s_1, s_2\}$, $\{s_1, s_3\}$ and $\{s_2, s_3\}$ for 0.5 units of time each

Scheduling the covers

Different schedules can conduct to equivalent solutions

Scheduling the covers

Different schedules can conduct to equivalent solutions

Questions:

- How can we find these covers?
- How long are we going to use them?

A very simple model

If we know how to build the covers, $\alpha\text{-CMLP-MR}$ is simply formulated by:

General LP model

Maximize:
$$\sum_{j|C_j \in \Omega} t_j$$

$$\sum_{j|C_j \in \Omega} (E_{s_v}) t_j \le \beta_{s_v} \qquad \forall \ s_v \in S$$

$$t_j \geq 0 \qquad \forall \ j | C_j \in \Omega$$

Remarks:

• Too many columns 15 sensors \approx 14 million columns

Remarks:

- Too many columns
 15 sensors ≈ 14 million columns
- Few columns are useful

 15 sensors: at most 15 columns

Remarks:

- Too many columns
 15 sensors ≈ 14 million columns
- Few columns are useful
 15 sensors: at most 15 columns
- Strategy: generate them on the fly

Remarks:

- Too many columns
 15 sensors ≈ 14 million columns
- Few columns are useful
 15 sensors: at most 15 columns
- Strategy: generate them on the fly

Solution approach

Column generation is a natural approach to solve the problem

Principle of column generation approaches (CG)

Master Problem (RMP)

Maximizes network lifetime for the available set of columns

Principle of column generation approaches (CG)

Master Problem (RMP)

Maximizes network lifetime for the available set of columns

Pricing Subproblem (PS)

Identifies new columns that can help to extend lifetime

Principle of column generation approaches (CG)

Master Problem (RMP)

Maximizes network lifetime for the available set of columns

Pricing Subproblem (PS)

Identifies new columns that can help to extend lifetime

Performance might be poor...

- PS implementation issues
- Heading-in effect
- Tail-off effect

Solving the pricing subproblem

Data

 π_{si}: Dual variable value associated to battery constraint for sensor s_i

Solving the pricing subproblem

Decision variables

- sensor activity
 - $y_{s_i} \in \{0,1\}$

Objective

- Min: $\sum_{s_i \in \mathcal{S}} y_{s_i} \pi_{s_i}$
- Identify a subset of sensors with interesting reduced cost

Solving the pricing subproblem

Remarks

- Weighted set covering NP-Hard
- One column per iteration
- Approximations lead to premature convergence

Heading-in effect

Tail-off effect

Tail-off effect

Improvements – Stabilization

Classical stabilization strategies are explored

Stabilized CG

Manage dual variables:

- Dual variable stabilization
- Dual variable smoothing

Improvements – Stabilization

Classical stabilization strategies are explored

Stabilized CG

Manage dual variables:

- Dual variable stabilization
- Dual variable smoothing

Improvements – Stabilization

Classical stabilization strategies are explored

Stabilized CG

Manage dual variables:

- Dual variable stabilization
- Dual variable smoothing

Nice, but not very efficient...

Improvements – Intensification & diversification

Metaheuristics are used to intensify/diversify the search

Intensification • GRASP • VNS

Improvements – Intensification & diversification

Metaheuristics are used to intensify/diversify the search

Intensification

- GRASP
- VNS
- Evolutionary algorithms

Diversification

 Return multiple profitable columns

(S5) (S6)

(s₇)

s₈

(54)

 (s_5) (s_6)

(57)

(58

A new matheuristic framework

GRASP

Set covering with relaxed connectivity constraints + repair

A new matheuristic framework

GRASP

Set covering with relaxed connectivity constraints + repair

VNS

Considering connectivity and coverage constraints

A new matheuristic framework

GRASP

Set covering with relaxed connectivity constraints + repair

VNS

Considering connectivity and coverage constraints

ILP solver

Used to check optimality or discover difficult columns

Results

Results

Other techniques and variants

Techniques used for the pricing subproblem

- Evolutionary algorithm find quickly several columns
- Constraint Programming prove optimality use specific tree variables and propagation

Other techniques and variants

Techniques used for the pricing subproblem

- Evolutionary algorithm find quickly several columns
- Constraint Programming prove optimality use specific tree variables and propagation

Variants of the problem

- Multiple base stations
- Irregular shapes
- Directional sensors
- Obstacles
- Area coverage

Publications

A. Rossi, A. Singh, and M. Sevaux.

Column generation algorithm for sensor coverage scheduling under bandwidth constraints. Networks. 60(3):141–154, 2012.

A. Rossi, A. Singh, and M. Sevaux.

An exact approach for maximizing the lifetime of sensor networks with adjustable sensing ranges. Computers and Operations Research, 39(12):3166–3176, 2012.

A. Rossi, A. Singh, and M. Sevaux.

Lifetime maximization in wireless directional sensor network.

European Journal of Operational Research, 231(1):229–241, 2013.

A. Singh, A. Rossi, and M. Sevaux.

Matheuristic approaches for Q-coverage problem versions in wireless sensor networks. Engineering Optimization, 45(5):609–626, 2013.

F. Castaño, A. Rossi, M. Sevaux, and N. Velasco.

A column generation approach to extend lifetime in wireless sensor networks with coverage and connectivity constraints. Computers and Operations Research, 52(B):220–230, 2014.

F. Castaño, E. Bourreau, N. Velasco, A. Rossi, and M. Sevaux.

Exact approaches for lifetime maximization in connectivity constrained wireless multi-role sensor networks. European Journal of Operational Research, 241(1):28–38, 2015.

M. Sevaux, M. Vecchio, and A. Bounceur, editors.

Special issue on Algorithms for Wireless Sensor Networks, volume x of Algorithms. MDPI, 2015. Available online.

Publications

A. Rossi, A. Singh, and M. Sevaux.

Column generation algorithm for sensor coverage scheduling under bandwidth constraints. Networks, 60(3):141-154, 2012.

Two important references

A. Rossi, A. Singh, and M. Sevaux.

Column generation algorithm for sensor coverage scheduling under bandwidth constraints.

Networks, 60(3):141-154, 2012.

F. Castaño, A. Rossi, M. Sevaux, and N. Velasco.

A column generation approach to extend lifetime in wireless sensor networks with coverage and connectivity constraints.

Computers and Operations Research, 52(B):220-230, 2014.

European Journal of Operational Nesearch, 241(1),20-30, 2013

M. Sevaux, M. Vecchio, and A. Bounceur, editors.

Special issue on Algorithms for Wireless Sensor Networks, volume x of Algorithms. MDPL 2015. Available online.

Contents

- 4 Simulation and Demo
 - www.cupcarbon.com
 - a simulation tool
 - open source
 - java-based platform

Demo CupCarbon

www.cupcarbon.org

Launch the demo movie, if it works!!!

Contents

- **6** Conclusion & perspectives
 - On our work
 - Future trends

Conclusions and perspectives

Our matheuristic framework

- is well suited for WSN lifetime maximization
- can adapt to many variants
- is fully customisable

And after...

- combination of all variants?
- moving targets (→ target tracking)
- moving sensors
- full integration in cup-carbon

UAV for professionals and for all Cooperation among robots and UAV

UAV for professionals and for all

THE GLOBAL STAGE FOR INNOVATION

¹Quote from a famous Belgian actor!

Are we aware?1

Among the 19 categories for innovation, 10 are related to sensors, wireless sensors or wireless sensor networks...

¹Quote from a famous Belgian actor!

Wireless Sensor Networks

A survey on maximizing lifetime in sensor coverage problems

Marc Sevaux

ORBEL 29

Université de Bretagne-Sud www.univ-ubs.fr/or/

February 5, 2015

